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Understanding how interacting subsystems of an overall system lead to cluster/group consensus is a
key issue in the investigation of multi-agent systems. In this Letter, we study the L1 group consensus
problem of discrete-time multi-agent systems with external stochastic inputs. Based on ergodicity theory
and matrix analysis, L1 group consensus criteria are obtained for multi-agent systems with switching
topologies. Some numerical examples are provided to illustrate the effectiveness and feasibility of the
theoretical results.
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1. Introduction

Multi-agent systems arise from different fields in natural and
artificial systems, including flocking of birds, schooling of fish [1],
and coordination of autonomous agents [2]. Scientifically, how to
design local rules by which interacting agents lead to emergence
of collective/consensus behavior is a fundamental and challenging
problem to be understood. Over the past few decades, the con-
sensus problems of multi-agent systems have attracted increasing
attention from researchers in diverse disciplines, such as physics
[3–6], biology [7–9], and control theory [10–14].

Consensus or agreement problems generally mean the conver-
gence to a common value asymptotically or in finite time among
all members of a group via local interaction rules/protocols. Under-
standing the collective behavior is one of the important questions
in non-equilibrium statistical physics. In 1995, Vicsek et al. [4] first
proposed a simple model, where n self-propelled agents moving
in the plane with the same constant speed and with the head-
ings of each agent updated according to the averaged direction
of its neighbors. Via computer simulation, they showed that the
system will synchronize, i.e. each agent behaves as others do in
its neighborhood, which characterizes the connection between the
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non-equilibrium dynamics and the equilibrium phase transitions.
Theoretical study was later performed by Jadbabaie et al. [11] for a
linearized version of Vicsek’s model. It was shown that the system
will achieve a consensus if the underlying communication graphs
are jointly connected within some contiguous bounded time inter-
vals. Along this line, numerous results and effective algorithms are
reported during the last few years. Useful approaches to consen-
sus problems include Lyapunov’s direct method [15,16], algebraic
graph theory [13,14,17], linear iterations [18], convex analysis [12],
and linear matrix inequality [19].

Recently, a major advance towards the consensus problem is
made by the endeavor of several authors [20–26], where group (or
cluster) consensus is formulated and studied. In a complex net-
work consisting of multiple sub-networks/sub-groups, group con-
sensus means that the agents in each sub-network reach a consis-
tent value asymptotically, and there is no consistent value among
different sub-networks. This novel type of consensus is more ap-
pealing for complex practical applications, such as the pattern for-
mation in bacteria colonies and the cluster formation of opinions
in social networks, since the agreements in these real-life scenar-
ios are often different with the changes of environments, situa-
tions or even time. Recent particle-based simulations on multiple-
component swarms [27], for example, unravel that the motion of a
swarm may lead to respective flocking behaviors from group to
group within a flock due to different behavioral parameters in-
volved in the model. Another striking example lies in the social dy-
namics [5], where Monte Carlo simulations reveal that interacting
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agents in a social network tend to form different opinion clusters,
and the number of clusters can be estimated by certain “confi-
dence bound” [28].

In the following we briefly review the relevant results on group
consensus. In [24], the authors addressed the group consensus in
continuous-time networks with fixed and undirected topology by
using Laplacian spectral theory. Based on some double-tree-form
transformations, the result was extended in [25,26] to allow for
switching topologies and communication delays. A restriction in
the above works that the sum of adjacent weights from each agent
in one group to all agents in another group is equal to zero at
any time was further relaxed in [23]. For discrete-time multi-agent
systems with fixed and switching topologies, algebraic criterions
of group consensus were established in [20,21] by discussing the
ergodicity of Markov chains and associated transition matrices. In
[22], the author considered an L1 group consensus problem under
fixed network by introducing adapted stochastic inputs. We men-
tion that, in different settings, stochastic consensus problems have
been well studied; see e.g. [29–31].

In this Letter, we aim to further investigate the group consen-
sus for discrete-time multi-agent systems and extend the L1 group
consensus results obtained in the prior work [22] to switching
topologies. Our motivation to address stochastic inputs, which is
a major difference from the work [21], mainly arises from the con-
sideration that the imposed inputs are inevitably subject to many
uncertainties inherent in complex systems (for example, environ-
mental noises in autonomous mobile swarms, measurement errors
due to imperfect communication channels, and parameter uncer-
tainty in climate models, etc.). In some cases, such as Brownian
motors [32] and stochastic resonance [33], maintaining a certain
amount of noises in an ordered state is even advantageous. On
the other hand, the ability of the consensus algorithm to toler-
ate gross errors in the input data can be better demonstrated via
the study of stochastic consensus (such as L1 and mean square
consensus), meaning that the consensus can still be reached when
fluctuation exists. Here, we model the underlying network topolo-
gies as weighted directed graphs. To realize L1 group consensus,
namely the expectations of the states of agents within the same
group converge asymptotically, external stochastic inputs are as-
sumed to have the same expected value for agents within the same
group. We show that the time-varying system achieves L1 group
consensus provided that there exists some L > 0 such that the
union graph across any L-length time interval has group spanning
trees.

The rest of the Letter is organized as follows. In Section 2, we
present some preliminaries and the problem formulation. The main
results are provided in Section 3. Some simulation results are given
in Section 4. Finally, the conclusion is made in Section 5.

2. Problem formulation

A weighted directed graph G = (V , E, A) of order n is composed
of a vertex set V = {v1, . . . , vn}, an edge set E ⊆ V × V , and a
weighted adjacency matrix A = (aij) ∈ R

n×n , where aij � 0 is the
element of A on the ith row and jth column. Let [n] = {1,2, . . . ,n}
be the index set of the vertices. We assume that (v j, vi) ∈ E if and
only if aij > 0. A directed path of length l in G from vertex vi
to v j means that there is a sequence of vertices vr1 , . . . , vrl+1 such
that (vrk , vrk+1 ) ∈ E for k = 1, . . . , l, with vr1 = vi and vrl+1 = v j .
If there is a vertex vi such that for all other vertices v j there is a
directed path from vi to v j , then graph G is said to have a directed
spanning tree with root vi . For any vertex vi ∈ V , if (vi, vi) ∈ E , it
is called a self-loop on vertex vi .

For a vector x ∈ R
n and a matrix A ∈R

n×n , denote by ‖x‖ a vec-
tor norm of x and ‖A‖ the induced matrix norm of A, respectively.
A matrix P = (pij) ∈ R

n×n is called a stochastic matrix if pij � 0
for all i, j, and
∑n

j=1 pij = 1 for i = 1, . . . ,n. Naturally, given a non-
negative (not necessarily stochastic) matrix A = (aij) ∈ R

n×n , there
is a corresponding weighted directed graph G = (V , E, A) in such
a way that A is specified as the weighted adjacency matrix. This
graph will be denoted by G[A], meaning that it is induced by A.

The multi-agent system to be studied in this Letter is composed
of a network G of n agents, which may be divided into K groups.
Specifically, a partition S = {S1,S2, . . . ,SK } of the index set [n]
is a sequence of subsets of [n] such that

⋃K
k=1 Sk = [n] and Sk ∩

Sk′ = ∅ for k 	= k′ . S naturally induces a partition of the graph G .
For a given partition S , the graph G is said to have group spanning
trees [21] with respect to S if for each group Sk , there is a vertex
vk ∈ V such that there exist paths in G from vk to all vertices
in Sk . The vertex vk is called the root of the group Sk . Notice that
the group spanning tree is a weaker definition than the spanning
tree since the root of a group is not necessarily the same for all
groups.

Let xi(t) ∈ R denote the state of the ith agent vi ∈ V at time t .
Denote x(t) = (x1(t), . . . , xn(t))T . The group consensus [24] means
that for any initial state x(0) ∈ R

n , the states of agents satisfy

lim
t→∞

∣∣xi(t) − x j(t)
∣∣ = 0,

for all i, j ∈ Sk and k = 1, . . . , K . Analogously, we say a system
reaches an L1 group consensus if for any initial state x(0) ∈ R

n ,
the states of agents satisfy

lim
t→∞E

∣∣xi(t) − x j(t)
∣∣ = 0,

for all i, j ∈ Sk and k = 1, . . . , K .
The discrete-time updating rule of the multi-agent system is

described by

xi(t + 1) =
n∑

j=1

pij(t)x j(t) + qi(t), i ∈ Sk, k = 1, . . . , K , (1)

where P (t) = (pij(t)) ∈ R
n×n is a stochastic matrix and G[P (t)]

corresponds to the communication topology at time t . qi(t) ∈ R

is an external stochastic input such that at any time t

Eqi(t) = Eq j(t), (2)

for all i, j ∈ Sk , k = 1, . . . , K .
Group ergodicity coefficient of a stochastic matrix P ∈ R

n×n

with respect to a partition S is defined as [34]

μS(P ) = min
1�k�K

min
i, j∈Sk

n∑
k′=1

min{pik′ , p jk′ }.

To analyze the convergence of the multi-agent system (1), we need
to estimate some characteristics of infinite product of stochastic
matrices by means of group ergodicity coefficient. For this, we
need the following lemma whose proof can be carried out follow-
ing the lines of Theorem 5.1 of [35] or Lemma 1 of [21].

Lemma 1. For a given partition S = {S1,S2, . . . ,SK }, if P (t) ∈ R
n×n

(t = 1,2, . . .) is a stochastic matrix and its associated weighted directed
graph G[P (t)] has group spanning trees and self-loops on every vertex,
then μS (P (t)P (t − 1) · · · P (1)) > 0 for t � n + 1.

3. Main results

Given a partition S as above, a stochastic matrix P ∈ R
n×n is

said to have inter-group common influence [21] if
∑

j∈Sk
pi j is

independent of i with i ∈ Sk′ but only depends on the indices k
and k′ . It is straightforward to check that if two stochastic matri-
ces P and Q have inter-group common influence with respect to
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the same partition S , the product P Q also has inter-group com-
mon influence with respect to S . We assume that the weights
{pij(t)} in the multi-agent system (1) satisfy the following assump-
tions.

Assumption 1. There exists a constant c > 0 such that for any i, j,
and t � 0, either pij(t) = 0 or pij(t) � c holds. Moreover, pii(t) � c
holds for all i and t � 0.

Assumption 2. P (t) has inter-group common influence for all t � 0.

Under Assumption 1, the weighted directed graph G[P (t)] has
self-loops on every vertex. Assumption 2 implies that for any pair
of groups Sk and Sk′ , either there are no edges from Sk to Sk′ ; or
for each vertex in Sk′ , there are at least one edge from Sk to it.

We now define the L1 group consensus manifold as follows

MS = {
x = (x1, . . . , xn)

T ∈R
n

∣∣ Exi = Ex j, for all i, j ∈ Sk,

k = 1, . . . , K
}
.

It is clear that the system achieves an L1 group consensus if and
only if limt→∞ x(t) ∈MS .

Proposition 1. For a given partition S = {S1,S2, . . . ,SK }, if Assump-
tion 2 holds, then the L1 group consensus manifold MS is invariant
under protocol (1) and (2).

Proof. By Assumption 2, we define

bk′,k(t) =
∑
j∈Sk

pi j(t),

for any i ∈ Sk′ . It is easy to see that B(t) = (bk′,k(t)) ∈ R
K×K is a

stochastic matrix for all t � 0. Assume that x(t) ∈MS , we need to
show that x(t + 1) ∈MS through (1) and (2).

Let xk(t) be the identical state of the vertices in group Sk at
time t . In addition, let qk(t) be the identical input for the vertices
in group Sk at time t . For any i ∈ Sk′ , we obtain

Exi(t + 1) =
K∑

k=1

∑
j∈Sk

pi j(t)Ex j(t) +Eqi(t)

=
K∑

k′=1

bk′,k(t)Exk(t) +Eqk′(t),

which is identical with respect to any i ∈ Sk′ . Thus the proof is
completed. �

To solve the L1 group consensus problem, we need to intro-
duce the group Hajnal diameter and a generalized Hajnal inequal-
ity. For a matrix A (not necessarily stochastic) with row vectors
A1, . . . , An and a given partition S , the group Hajnal diameter is
defined as [34]

diamS(A) = max
1�k�K

max
i, j∈Sk

‖Ai − A j‖,

for some vector norm ‖·‖. The following inequalities extend a clas-
sical Hajnal’s theorem. We omit the proof since it can be read out
from [21] essentially.

Lemma 2. Suppose x ∈ R
n is a column vector, P ∈ R

n×n and Q ∈ R
n×n

are two stochastic matrices. For a given partition S = {S1,S2, . . . ,SK },
if both P and Q have inter-group common influence, then

diamS(P Q ) �
(
1 − μS(P )

) · diamS(Q ),
and

diamS(P x) �
(
1 − μS(P )

) · diamS(x).

Let Q (t) = (q1(t), . . . ,qn(t))T . The system (1) can be rewritten
as

x(t + 1) = P (t)x(t) + Q (t). (3)

Theorem 1. Suppose that Assumptions 1 and 2 hold. For a given parti-
tion S = {S1,S2, . . . ,SK }, if there exists an integer L > 0 such that for
any L-length time interval [t, t + L), the union graph G[∑t+L−1

l=t P (l)]
has group spanning trees, then the system (3) with (2) achieves an
L1 group consensus as long as for any i the sequence {xi(t): t ∈ N} does
not change sign.

Proof. From (3), we obtain

x(t + 1) = P (t)P (t − 1) · · · P (0)x(0)

+
(

t−1∑
l=0

P (t)P (t − 1) · · · P (l + 1)Q (l)

)
+ Q (t). (4)

It follows from Assumption 1 that all diagonal elements of P (t) are
positive for t � 0. Therefore, every edge that appears in the union
graph G[∑t+L−1

l=t P (l)] will also appear in the graph G[P (t + L −
1)P (t + L − 2) · · · P (l)], which hence has group spanning trees as
well as positive diagonal elements for any t � 0.

By Lemma 1, there exists an integer N > 0 such that for all
t � 0,

μS
(

P (t + N L − 1)P (t + N L − 2) · · · P (t)
)
> 0.

Further, from Assumption 1, there exists some 0 < η < 1 such that
for any t � 0,

μS
(

P (t + N L − 1)P (t + N L − 2) · · · P (t)
)
� η (5)

holds.
On the other hand, we have

diamS
(
EQ (l)

) = 0 (6)

for all 0 � l � t in view of (2). By using Assumption 2 and the
discussion in the beginning of this section, one can see that the
product P (t)P (t − 1) · · · P (l + 1) has inter-group common influence
for all 0 � l � t − 1. Therefore, Lemma 2 and (6) yield that

diamS
(

P (t)P (t − 1) · · · P (l + 1)EQ (l)
)

�
(
1 − μS

(
P (t)P (t − 1) · · · P (l + 1)

)) · diamS
(
EQ (l)

) = 0,

(7)

for all 0 � l � t − 1.
Combining (4), (6) and (7), we have

diamS
(
Ex(t + 1)

)
� diamS

(
P (t)P (t − 1) · · · P (0)Ex(0)

)
.

For any t , we can represent t = kN L + l0 for some 0 � l0 < k. If
l0 = 0, we obtain

diamS
(
Ex(t + 1)

)
� (1 − η)k · diamS

(
Ex(0)

) → 0,

as k → ∞ (i.e. t → ∞), by employing Lemma 2 and (5). If l0 � 1,
we can derive similarly

diamS
(
Ex(t + 1)

)
� (1 − η)k · diamS

(
P (l0 − 1)P (l0 − 2) · · · P (0)Ex(0)

) → 0,
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Fig. 1. A network of eight agents with topologies switching in (a) and (b). Three
groups {1,2}, {3,4,5} and {6,7,8} are coded by three different colors for illustra-
tion. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this Letter.)

as t → ∞. In view of the sign condition we conclude that the proof
of Theorem 1 is completed. �

By the above theorem, we can obtain a group consensus in the
sense of almost sure convergence.

Corollary 1. Suppose that Assumptions 1 and 2 hold. For a given parti-
tion S = {S1,S2, . . . ,SK }, if there exists an integer L > 0 such that for
any L-length time interval [t, t + L), the union graph G[∑t+L−1

l=t P (l)]
has group spanning trees, then there exists a subsequence {tk} of time
such that the system (3) with (2) achieves a group consensus almost
surely as tk → ∞.

4. Simulation study

In this section, we present numerical simulations to illustrate
the effectiveness of the proposed theoretical results. We consider
a multi-agent system with eight agents {1,2, . . . ,8} and its graph
topology is switching among the topologies given in Fig. 1(a) and
Fig. 1(b) periodically. The associated weighted adjacency matrices
corresponding to Fig. 1(a) and Fig. 1(b) are taken as

P (t even) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

1/3 0 1/3 0 0 1/3 0 0
0 1/3 0 1/3 0 0 1/3 0
0 1/3 0 0 1/3 1/3 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1/2 1/2 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

P (t odd) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
1/2 1/2 0 0 0 0 0 0

0 1/3 1/3 0 0 0 0 1/3
1/3 0 0 1/3 0 1/3 0 0

0 1/3 0 0 1/3 1/3 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1/2 1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

respectively.
The above system has a partition S with S1 = {1,2}, S2 =

{3,4,5} and S3 = {6,7,8}. Note that neither of the two graphs
in Fig. 1(a) and Fig. 1(b) has group spanning trees. However, the
union graph of them has group spanning trees and the roots of
groups S1, S2 and S3 are 1, 2 and 6, respectively. It is easy to
check that Assumptions 1 and 2 hold. We take initial state as
x(0) = (1,4,7,2,6,3,5,8)T . In what follows, we instantiate the
general inputs Q (t) of system (3) in two examples.

Example 1. For any t � 0, we take

q1(t),q2(t) =
{

1, with probability 0.5,

−1, with probability 0.5,

q3(t),q4(t),q5(t) =
{

2, with probability 0.5,

−2, with probability 0.5,

q6(t),q7(t) ∼ Poi

(
1

t2 + 1

)
, and q8(t) ∼ Exp

(
t2 + 1

)
,

where all the random variables involved are independent, Poi(·)
and Exp(·) refer to Poisson and exponential distributions, respec-
tively. We have Eqi(t) = 0 for i = 1, . . . ,5, Eq6(t) = Eq7(t) =
Eq8(t) = 1/(t2 + 1). Therefore, all assumptions in Theorem 1 are
satisfied. The state trajectories of the agents are shown in Fig. 2(a),
and one can observe that L1 group consensus is achieved asymp-
totically. In Fig. 2(b) the dynamical behavior of diamS (x(t)) is plot-
ted. The convergence of diamS (x(t)) to zero verifies the L1 group
consensus.

Example 2. We take the inputs as autoregressive processes: AR(1)
processes. Specifically, for t � 1 and i = 1,2

qi(t) = 1

2
qi(t − 1) + ε(t),

for i = 3,4,5,

qi(t) = 1

3
qi(t − 1) + ε(t),

and for i = 6,7,8,

qi(t) = 1

4
qi(t − 1) + ε(t),

where ε(t) ∼ N(0,1) is white noise. For all i, qi(0) = 0. It is known
that these processes are stationary and Eqi(t) = 0 for all i. There-
fore, all assumptions in Theorem 1 are satisfied. The state trajec-
tories of the agents are shown in Fig. 3(a), and the behavior of
diamS (x(t)) is plotted in Fig. 3(b). Both of them indicate that the
L1 group consensus is achieved asymptotically.

5. Concluding remarks

In this Letter, we have provided a theoretical analysis for a
discrete-time multi-agent system under switching topologies and
external stochastic inputs. L1 group consensus criteria are deduced
for the multi-agent system by using ergodicity theory and non-
negative matrix analysis. The intriguing physical insight behind is
that intra-group consensus in a system of autonomous particles
can be realized in the sense of L1 convergence even when the
network topology switches and stochastic fluctuation exists. Nu-
merical simulations are provided to illustrate the availability of the
obtained results. It is essential to find a suitable partition of the
system in question, which satisfies the inter-group common influ-
ence and group spanning trees properties. A number of network
partition/community detection techniques have been developed in
statistical physics, which lead to fast and effective algorithms with
application to real network data sets (see e.g. [36–39]). Hence, it
is viable to check our consensus criteria and apply them to an-
alyze complex systems in the real world. Future work may focus
on deeper mathematical study of the algorithm, in order to relax
the inter-group common influence condition or to design further
improvement such as finite-time group consensus algorithms, etc.
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Fig. 2. (a) State trajectories of the agents 1, 2 (red dotted lines), agents 3, 4, 5 (blue solid lines), and agents 6, 7, 8 (green dashed lines). (b) Behavior of diamS (x(t)) for
Example 1. The plots of simulation results correspond to the average of 30 independent simulation runs.

Fig. 3. (a) State trajectories of the agents 1, 2 (red dotted lines), agents 3, 4, 5 (blue solid lines), and agents 6, 7, 8 (green dashed lines). (b) Behavior of diamS (x(t)) for
Example 2. The plots of simulation results correspond to the average of 30 independent simulation runs.
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